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Abstract 

A beam of  polarized light propagat ing along the 
helical  axis of  a -quar tz  interacts with SiO4/a groups 
consecutively. When a skew matrix of a resultant 
dielectric tensor is compared  to a skew matrix of  a 
rotation matrix,  the polarizabil i ty components  of  an 
SIO4/2 group, with two sets of  results, may be derived 
since the specific rotation along the helical  axis is 
known for 5892.9 ,~ light at 293 K. Both sets have the 
same mean value for the components .  The mean  is 
close to an empir ical  result based on the bond refrac- 
tivity of  Si-O. In compar ison  with the optical rotation 
sign (+ or - )  along the optic axis, an opposite rotation 
sign is derived along the directions perpendicular  to 
both the optic axis and any diad axis. In a-quartz ,  
the inactive directions 33.83 ° from its optic axis are 
interpreted. The diad-axis  directions are predicted to 
be inactive directions. Bunn 's  empir ical  formula  is 
interpreted. 

Introduction 

Barton (1975) suggested that optical-rotation com- 
ponents can be isolated in the study of crystals, a -  
quartz was chosen for a theoretical study of  the 
relat ionship between its helical  structure and its rota- 
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tory properties. Because of  the birefringence,  it is 
difficult to determine exper imenta l ly  the rotatory 
power of a -quar tz  in sections parallel  to its optic axis 
(Wahlstrom, 1979). Since the specific rotation along 
the optical axis of  a -quar tz  was known, the polariza- 
bility components  of  an SIO4/2 group in a lef t -handed 
quartz with + optical rotation can be derived with 
the assumpt ion  that there is a relat ionship between 
the skew matrix of a resultant dielectric tensor and 
the skew matrix of a rotation matrix. Some inactive 
directions in a-quar tz  can be interpreted or predicted 
based on its structure and this assumption.  Wahlstrom 
(1979) predicted that ' l ight traveling at right angles 
to the optic axis is rotated but in an opposite sense 
to that propagated along the optic axis'. The same 
proposal  for helix optical activity was also ment ioned 
by Barton (1982, p. 285). Based on the structure of 
a-quartz ,  the rotation sign changes as predicted. 

The specific rotations along the two directions per- 
pendicular  to the optic axis were calculated. Note 
that the proport ional i ty  between the rotation angle 
and the thickness along the helical axis can also be 
interpreted through the mult ipl icat ion of  rotation 
matrices. Bunn 's  empir ical  formula  (Bunn,  1961), 
used to calculate the directional  polarizabil i t ies of  a 
molecule in order to optimize the molecular  orienta- 
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tion in a crystal cell (Chen,  Schug & Viers, 1986), is 
briefly interpreted in this paper.  

Theoret ical ly,  optical rotat ion is interpreted as the 
phase difference in Fresnel 's  equation.  Circular  
differential refraction refers to the method where both 
refractive indices of left and right circular polarized 
light waves are expanded  with mult ipole tensors (see 
Barton,  1982, p. 242). A more basic method is the 
refringent-scattering approach  (see Barton,  1982). 
However,  both methods  are complicated and 
approximate  since only part  of  the multiple tensors 
are used. Empirically,  there are chirality functions to 
calculate the optical rotation (see Mason,  1982; 
Barron, 1982, p. 220). 

The space group of  ( - ) - a - q u a r t z  is P3~21 and that 
of  (+ ) - a -qua r t z  is P3221. A screw triad axis in the 
crystal is an optic axis Z. Rotat ion diad axes are 
perpendicular  to the optic axis (see Fig. 1). The crystal 
parameters  in a hexagonal  coordinate  system are a = 
4.914 and c--5 .409 ,~ (Boisen & Gibbs, 1985). In a 
unit cell, there are three SIO4/2 groups connected by 
a screw triad axis. 

Theory 

For a beam of  incident plane-polar ized light, assume 
that an optical rotation angle is a dihedral  angle along 
its traveling direction from an electric field strength 
E to a d isp lacement  D. Assume that  the dihedral  angle 
can be represented by the angle between D and E. A 
rotation matrix may be considered as a possible trans- 
formation matrix between the two vectors. 

A resultant  dielectric tensor  is also the coefficient 
of  the l inear relat ionship between D and E if the 
intensity of  the light is weak. The resultant  dielectric 
tensor is a product  of  group dielectric tensors. Each 
of  the group tensors consists of  a polarizabil i ty tensor 
of an SIO4/2 group in a unit cell. The resultant dielec- 
tric tensor is composed of  a symmetric  matrix and a 
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Fig. 1. Projection of three layers of Si atoms along the optic axis 
Z. Heights indicated by shading. (X, Y, Z) in a right-handed 
system (Gibbs, 1926). 

skew matrix. Through the compar ison between the 
skew part of  the resultant  dielectric tensor and the 
skew part  of the rotation matrix of E, the relat ionship 
between the polarizabil i ty components  of  5iO4/2 and 
the rotation angle may be obtained.  The group- 
polarizabil i ty components  are thus derived, since the 
rotation angle along the helical axis is known and 
the polarizabil i ty components  of  the crystal are 
obtained from the refractive indices of  the crystal 
through the Lorenz-Lorentz  equation.  

I. Polarizability tensors o f  SIO4/2 groups 

The Cartes ian coordinate  system as shown by 
Kleinman & Spitzer (1962) in Fig. 1 of their paper  is 
chosen for a crystal cell of  (+ ) - a -qua r t z  with a left- 
handed  structure such that  Z is the optic axis (the 
screw triad axis); X is a diad (twofold) axis of the 
crystal. X, Y and Z are in a r ight-handed system. 

Each SIO4/2 group is in a tetrahedral  configuration 
with an O atom at each of the four vertices and an 
Si atom at the center. Three quarter- turn inversion 
axes of an SIO4/2 te t rahedron were chosen as a right- 
handed  Cartes ian basis (i, j, k) with Si at the origin. 
i is a unit vector along a diad axis in an outward 
direction from a screw triad axis. k deviates from Z 
by 16.31 ° clockwise as viewed along ( - i ) .  The value 
16.31 ° was calculated based on the coordinates of the 
O and the Si atoms (Julian & Lane, 1968). Suppose 
that a ,  (i -- 1, 2, 3) are the polarizabil i ty components  
of each SIO4/2 group with respect to its own basis (i, 
j, k), (i', j', k') or (i", ]", k"). The polarizabili ty matrices 
of  the three SIO4/2 groups with respect to their  own 
coordinate  systems are in the same form, 

a l l  0 0 ] 

a ,  = 0 a22 0 

0 0 t~33 

[ i = l , 2 , 3 ; b a s i s  (i , j ,  k), ( i ' , j ' ,  k') or (i",j", k")]. 

Through the or thogonal  t ransformations,  those bases 
are turned 16.31 ° counterclockwise as viewed along 
( - i ) ,  ( - i ' )  or ( - i" ) .  The bases of  these three groups 
are respectively changed to the r ight-handed Car- 
tesian basis (x, y, z), (x', y', z') or (x", y", z"), where x 
is i, x' is i', and x" is i". All the axes z, z' and z" are 
parallel to the axis Z. Among the three new bases, 
the basis (x, y, z) is parallel to the basis of the unit 
cell (X, Y, Z) such that x, y and z are parallel to X, Y 
and Z, respectively. 

A~ = 
a l l  0 0 

0 A22 B 

0 B A33 

[ i , j  -- 1, 2, 3; basis (x, y, z), (x', y', z') or (x", y", z")], 
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where 

A22 = o~22 c o s  2 1 6 . 3 1 ° +  ot~33 sin 2 16.31°; 

A33 = ix22 sin 2 1 6 . 3 1 ° +  0t33 c o s  2 16.31°; 

B = - a 2 2  cos 16.31 ° sin 16.31 ° 

+ O~33 COS 16.31 ° sin 16.31 °. 

Each of the bases (x, y, z), (x', y', z') and (x", y", z") 
was further converted to the basis of the crystal cell 
(X, Y, Z) by means of a new orthogonal transforma- 
tion. A0, A~ and A~ are the three polarizability tensors 
of the three groups with respect to the basis of the 
unit cell (X, Y, Z). Since only the directions are impor- 
tant (x, y, z) and (X, Y, Z) can be treated as the same 
basis despite the displacement between their origins, 

(ot~1+3A22)/4 -3t/E(alt-A22)/4 -3~/2B/2] 
A',j= -3t/2(otli-A22)/4 (3ct11+A22)/4 -B/2 I 

-3~/2B/2 -B/2 A33 J 

[basis (X, Y, Z)]; 

r (oqt+3A22)/4 3t/2(ot~t-A22)/4 3'/2B/2 
Ai"~ = / 3 ~ / 2 ( a ~ -  A22)/4 (3ctt ~ + 322)/4 -B/2 

L 3t/2B/2 -B/2 A33 

[basis (X, Y, Z)]. 

The tensor A~j in the basis (X, Y, Z) is the result of 
an orthogonal transformation of a tensor A 0 in the 
basis (x', y', z') with a planar rotation angle m = -120  ° 
through the basis turning clockwise around an un- 
altered axis Z as viewed along - Z .  A~ in the basis 
(X, Y, Z) is the result of a transformation from A 0 in 
the basis (x", y", z") with m = 120 °, 

cos m sin m 0 

- s i n m  costa  0 

o 0 1 

all  0 0 ] 

] 0 A22 B 

0 B 333 

I O~11 Cos2m + A22 sin 2 m 

= -ctticosmsinm+A22cosmsinm 
B sin m 

cos. m - s i n m  ! ]  

sin m cos m 

0 0 

-arm cos m sin m + A22 cos m sin m 

arm sin 2 m + A22 cos 2 m 

B cos m 

I (oq1+3A22)/4 31/2(ali--322)/4 3t/ZB/2 
= 31/2(ot11--A22)/4 (30q1+A22)/4 -B/2 

31/2B/2 -B/2 A33 

B sin m ] 
B cos m / 

A33 J 

: 3',;. 

II. A dielectric tensor and a rotation tensor 

The linear relationship between a displacement D 
and a field strength E is D~=Y.je~jEj ( i , j=  1,2,3).  
The dielectric tensor e o is 60+47rNd Ao, 6o+ 
47rNd A~ or 8o +47rNd A~ depending on which of 
the three SIO4/2 groups in a unit cell is referred to. 
6 o is the Kronecker delta, N is Avogadro's constant, 

d is the density of a-quartz  in mol ml-I, Ao ' A~ and 
A~. are in ml group -1. 

While an incident beam of light travels along +Z,  
it passes through the three SiO4/z groups in a left- 
handed structure consecutively. It passes through the 
first group with dielectric tensor e0(1) and polarizabil- 
ity tensor AIj (l , j  = 1, 2, 3) and then passes through 
the second group with ekt(2) and Akt (k, l - -1 ,  2, 3). 
The beam then meets the third group with e~k(3) and 
A'i~, (i, k = 1, 2, 3). The linear relationships are: 

D~ = Z eik(3)Ok ; Dk = ~ ekt(2)Di; 
k I 

D , = E  eo(1)E j. 
J 

Thus 

D,=Y, eoEj= Z e,k(3)ek,(2)eo(l)Ej 
j k,l,j 

= r, (6,k+47rNdATk)(ak,+4~NdAk,) 
k,l,j 

x (6o + 4~-NdA~)Ej 

=E[s(Z) i j ,  sym+t(Z)ij, skew] Ej, (1) 
) 

where i, j, k, l =  1, 2, 3. e 0 is a resultant dielectric 
tensor, s(Z)~j.sym and t(Z)0.ske w are respectively a sym- 
metric matrix and a skew matrix of the dielectric 
tensor for a beam of light traveling along the +Z  axis. 
The entries of an unsymmetrical dielectric tensor e o 
a r e :  

ell = (1 +47rNda11)[1 + ~'Nd(amm + 3 A 2 2 ) ]  2 

- 3( 7rNd)2(aa~ _ A22)2( 1 + 47rNdA22) 

- 48( "trNd)3 B2(ail - A22) 

- 12( 7rNd)2 B2( 1 + 4 7rNdAa3); 

e22 = (1 + 47rNdA22)[ 1 + "trNd(3alm + A22)] 2 

- 3 ( ~ N d  )2(all - A22)2( 1 + 4"n'Nda11) 

- 8 (  ~NdB)2[ I + 7rNd(3al~ + A22)]-4(-n 'SdB) 2 

x {2[1 + 7rSd(3ala + A22)]-  (1 +47rNdA33)}; 

e33 = (1 + 47rNda33) 3 -  16( rrNdB )2(1 + 4~'NdA33) 

+ 4( ~NdB)2( 1 + 4~'NdA22) 

- 12(TrNdB)2(1 + 4~'Ndal t ) ;  

e21 ----- - -  e12  = 2 x 31/2( rrNd)2(all - A 2 2 )  2 

x [1 + 27rNd(al~ + A22)] 

+ 4 x 31/2(rrNd)2B2 

X [ 4 7 r N d ( A 3 3 - A 2 2 -  a l l  ) -  1]; 

e31 = - e l 3  = 8 x 31/2(.¢rNd)2B[a11 + A22 - 2A33 

2 2 4A2 +4ai1A22 + "n'Nd (a 11 - A22 - . 

- 0t11A33 + A22A33+2B2)]; 
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e32:  e23:  -8(TrNd)3B(3ot~ + A~2+4A~3 

- 6al  1 A33 - 2A22A33 - 2 B2). 

The entries of t(Z)0.sk~w are 

t(Z)ij.skew = t2, 0 O , 

131 0 0 

where t2~ = e2~ ; t31 = e31. The entries of the symmetric 
part s ( Z ) i j ,  sy m a r e  

[ el~ 0 0 ] 

s(Z)ij.sym = 0 E22 E32 

0 E32 E33 

It may be assumed that the direction change from E 
to D is mainly due to the skew matrix, t(Z)ij.skew. 
Therefore, we compare only the skew part of the 
dielectric tensor with the skew matrix of a + rotatory 
matrix, o sn !] [co  0 

- s in  4~ 0 and - s in  q~ cos q~ 0 

0 0 0 0 1 

and neglect the contribution due to the symmetric 
part. The positivity of the angle q5 means dextro- 
rotatory when viewed along - Z .  If the absolute value 
of t2~ is not larger than 1, let us assume that 

t21 = - s i n  4~, (2) 

where 

4~ = 21.724 ° mm -~ x 5.409 x 10 .7 mm = 1.175 x 10 .5° 
-1 is a dextrorotatory angle. The value 21.724°mm 

along the optic axis for the plane-polarized light 
with the wavelength 5892.9 ~ at 293 K was obtained 
from the International Critical Tables of Numerical 
Data, Physics, Chemistry and Technology (1929). The 
density of a-quartz,  d = 0.04404 mol ml -~, was calcu- 
lated from the parameters of the unit cell, the number 
of groups in the unit cell and the atomic weights of 
silicon and oxygen. Equation (2) is the relationship 
between an off-diagonal entry in a rotation matrix 
and the corresponding entry in a skew part of a 
dielectric tensor. 

III. The polarizability components of a group 

The average (Ao) of Ao, Aii and AI~ as shown below 
is a tensor with three principal polarizabilities of 
a-quartz.  

(Ao)= N 0 (a~,+A22)/2 0 . (3) 

0 0 A33 

The refractive indices of a-quartz are 1.544246 
(ordinary index) and 1.553355 (extraordinary index) 

at 291 K for light with wavelength 5892.9 ~ (Interna- 
tional Critical Tables of  Numerical Data, Physics, 
Chemistry and Technology, p. 341). The principal 
molar polarizabilities of c~-quartz, derived from these 
refractive indices through the Lorenz-Lorenz for- 
mula, are 1.7119 and 1.7356mlmol -~. They are 
respectively equal to the entries of the molar 
polarizabilities in (3), 

N(a~ l+A22) /2=l .7119mlmol  -~, (4~ 

NA33 = 1.7356 ml mol -I. (5) 

From (2), (4) and (5), two sets of solutions were 
obtained from a quadratic equation. The first set is 
al l  = 2.829 X 10 -3° ,  a22=2.854x 10 -3° ,  O~33 = 
2.884x 10 -3° ,  while the second set is a~  = 
2.886 × 10 -3°, o~22 = 2.792 × 10 -3°, O[33 = 

2.890× 1 0 - 3 ° m  3 group -~. Both sets have the mean 
value (a , )  = 2.856 x 10 -30 m 3 group -1. The mean value 
is close to an empirical result based on bond refrac- 
tivity of Si-O, 1.80 (Xu, 1978). The refractivity of an 
S i O 4 / 2  group is R = 1.80 × 4 = 7.20 ml mol -~. Since 
R = 47rNa/3, the empirical polarizability a is 2.85 x 
10-3°m 3 group -~. The mean value (a , )  of a ~ ,  a22 
and o~33 is close to the empirical result. 

IV. The rotation diad axes are the inactive directions 

Direction X is a diad axis. When a beam of  light 
travels along +X, it meets two groups with polarizabil- 
ity tensors A~,I and A',~, simultaneously. Then, the light 
passes a group with polarizability tensor A o. Since 
the resultant tensor of A'kt and A'~, is a diagonal matrix 
and A o is also a diagonal matrix, the product of the 
two diagonal matrices is a diagonal matrix. The off- 
diagonal entries are zeros. Since sin qb=0 (main 
value: q~ =0) ,  direction X is an inactive direction. 
The three diad axes connected by a screw triad axis 
are the inactive directions. 

V. Interpretation of  inactive directions 33.83 ° from Z 

The Cartesian coordinates of the three Si atoms 
and the O atoms in a unit cell of (+)-a-quar tz  with 
a left-handed helical structure are given by Julian & 
Lane (1968) and Kleinman & Spitzer (1962). The 
coordinates in a hexagonal coordinate system are 
given by Boisen & Gibbs (1985). When an incident 
beam of light travels along the normal direction of 
the coplane of the three Si atoms, the wave front of 
the plane-polarized light meets the three S i O 4 / 2  
groups simultaneously and the resultant molar 
polarizability tensor will be the average (A0) of the 
three tensors A0, A~j and A~, as given in (3). 

The resultant matrix is diagonal. The correspond- 
ing dielectric tensor e~j= 80+47rNd (Ao) is also 
diagonal. All the entries of its skew matrix are zeros. 
If the zero entry of the skew matrix is compared to 
the entry of a rotation matrix, then sin q~ = 0 (main 
value: qb=0). Therefore, the normal direction n~ 
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shown  in Fig. 2 is an op t ica l ly  inact ive  d i rec t ion .  It 
is 42.0 ° f rom Z. The  inac t ive  d i rec t ion  was repor ted  
by W a h l s t r o m  (1979) as 33.83 ° be tween  Z and  the 
no rma l  d i rec t ion  n2 o f  a crystal  cut sheet.  The  
difference is less t han  10 ° . 

To ob ta in  the va lue  42.0 ° , the Car tes ian  coo rd ina t e s  
o f  the three Si a toms,  x, -- 2.308, y~ = 0.000, z~ = 0.000, 
x2 = - 1.154, Y2 = 1.999, z2 = - 1.802, and  x3 = - 1.154, 
Y3 = -1 .999 ,  z3 = 1.802 ( Ju l i an  & Lane,  1968) are sub- 
s t i tuted in the cop l ane  e q u a t i o n  

X - x l  Y - Y l  Z - z 1  

x2 x, Y2 - Y~ z2 - z, 

X3 Xl Ya -- Y~ Z3 -- ZI 

Thus  

o r  

= 0 .  

(Z3X1 -- Z3X3) Y +  (xly2 - x 3 Y 2 ) Z  = 0 

6.245 Y + 6 .926Z = O. 

The  above  equa t i on  refers to a p lane  con t a in ing  
the or ig in  and  the X axis. The angle  be tween  Y 
and  the cop l ane  o f  the three  Si a toms is 
t a n - '  ( - 6 . 2 4 5 / 6 . 9 2 6 ) = - 4 2 . 0 3  °. Therefore ,  the angle  
be tween  Z and  the no rma l  d i rec t ion  o f  the c o p l a n e  
( the inact ive  d i rec t ion)  is 42.0 ° (absolu te  value,  see 
Fig. 2). 

O the r  inact ive  d i rec t ions  can also be pred ic ted  
based  on the  a s sumpt ion  tha t  the resu l tan t  d ie lect r ic  
tensors  are symmetr ic .  

VI. Rotat ion angle and thickness 

The  m e t h o d  meets the p r o p o r t i o n a l  r equ i r emen t  
be tween  the ro ta t ion  angle  and  the th ickness  of  a cut 
sheet.  Assume tha t  the b e a m  of  p l ane -po la r i zed  l ight  
is ro ta ted  by t/, (°) as it t ravels  t h rough  a unit-cel l  
length.  I f  the pa th  length  of  the l ight  in the m e d i u m  
is n t imes the unit-cel l  length  and  the ro t a t ion  angle  
is nq~ then  the ro ta t ion  angle  is p r o p o r t i o n a l  to the 

I! 2 

> Y 

Fig. 2. The normal direction at of a coplane of three Si atoms in 
a unit cell deviates by 42.0 ° from Z, while the normal direction 
n2 of a cut sheet (an inactive direction) deviates by 33.8 ° from Z. 

th ickness  of  the cut sheet.  Thus ,  the fo l lowing  re la t ion  
shou ld  hold :  

[ c o s ~  s i n ~  0 

- s i n ~  c o s ~  0 

0 0 1 

The p r o o f  fo l lows by 
for n = 1. Assume it 
n + 1 it must  be val id  

In Icosn  sinn  !l 
= - s i n  nq~ cos nq) . 

0 0 

induc t ion .  The re la t ion  is val id 
is val id  for  n. I f  it is val id  for  
for  any  na tura l  number .  Since [cos  !]icosn  

- s in  • cos q~ - s in  nq0 

0 0 0 0 

cos n ~  cos • - s i n  nq~ sin q~ 

= - s in  nq~ cos q ) -  cos nq~ sin q0 

[ c o s ( n + l ) ~  

= - s i n ( n  + 1) q~ 

0 

sin n~  0 ]  

] cos n~  0 

1 

0 

cos nq~ sin qb+sin nq~ cos • 0 ]  

01 - s in  nq0 sin qO + cos nq~ cos 

0 

sin(n + 1)~ 0 

c o s ( n + l ) ~  0 , 

0 1 

the re la t ion  is val id for  n + 1. Hence  the ro ta t ion  angle  
is p r o p o r t i o n a l  to the n u m b e r  of  uni t  cells o f  a -qua r t z .  
Tha t  is, the ro ta t ion  angle  is p r o p o r t i o n a l  to the 
th ickness  of  a cut sheet.  

VII. Interpretation o f  B u n n ' s  empirical f o r m u l a  

In Bunn ' s  empir ica l  f o rmu la  (Bunn ,  1961), the 
po la r izab i l i ty  o f  a mo lecu le  a long  a d i r ec t ion  i is 

Pi =~, (Pt cos 2 q~+P,  sin 2 q~). 

The  s u m m a t i o n  is over  all the bonds  in a mo lecu le  
or  group.  For  each b o n d ,  P; is a l ong i tud ina l  b o n d  
po la r izab i l i ty  a long  the b o n d  o r i en t a t i on  l, P, is a 
t ransverse  b o n d  po la r i zab i l i ty  a long  any  d i rec t ion  t 
p e r p e n d i c u l a r  to the bond .  • is the angle  be tween  
the b o n d  d i rec t ion  ! and  the d i rec t ion  i. Assume v is 
p e r p e n d i c u l a r  to bo th  i and  l. Then ,  t is p e r p e n d i c u l a r  
to bo th  ! and  v (Fig. 3) such  tha t  l, t and  v are in a 
r i gh t -handed  system, j is p e r p e n d i c u l a r  to bo th  i and  
v such tha t  (i, j, v) is in a r i gh t -handed  system (Fig. 
3). I f  ro ta ted  a r o u n d  v t h r o u g h  an angle  ~ ,  the b o n d  
po la r izab i l i ty  t ensor  changes  its c o o r d i n a t e  system 

i ~ " - - - - ~  I t 

Fig. 3. The right-handed systems (!, t, v) and (i, j, v). 
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from (l, t, v) to (i, j, v) through the orthogonal trans- 
formation 

cos 

-sin q~ 
0 

s ,nO 0 0 

cos q~ 0 P, 0 
o 0 o po 

[ cos~  -sinq~ 0 ]  
sin tit' cos q~ 0 

o 0 1 

Pt cos 2 ~ + P, sin2 

= - ( P t -  Pt) cos • sin 

0 

- ( P i -  P,) cos @ sin @ 0 
P~ cos 2 @ + Pi s in2 @ 0 

0 P~ 

where P~ = P,. Bunn's empirical formula is simply the 
summation of the entry Pt cos 2 to + P, s in2 to over all 
the bonds in a molecule or group. 

Discussion 

(1) If a beam of light propagates along the positive 
direction of Y, the wave front consecutively meets 
the groups Si(1 ) (open circles in Fig. 1), Si (2) (shaded 
circles) and Si(3) (filled circles) owing to the crystal 
structure P3221. Because of the crystal structure, the 
relationship between D and E along Y and the skew 
matrix along Y, 

0 --t21 --t31 

t ( Y ) i j ,  skew = t21 0 0 , 

t31 0 0 

are the same as those along Z. 
While the crystal is viewed along the ( - Y )  direc- 

tion, the skew part of a clockwise-rotation matrix 
around Y (roll) is 

from 

0 0 - s in  to] 

0 0 0 , 

sin to 0 0 

cos to 0 - s i  O t o ]  
0 1 

sin tO 0 cos to J 

Assume that t31 = sin to(Y) if the absolute value of 
t3~ is not larger than one. For the first set of polariza- 
bility components,  the rotation angle to(Y) is 
-0.00732 ° for a length of  4.256 A, since a cos 30 °=  
4.914/~ cos 30 °=4.256/~.  The calculated specific 
rotation for the set is - 17  200 ° mm -1 (equivalent to 
+80 ° mm -~ ) along Y. As for the second set of polariza- 

bility components,  t o (Y)=-0 .0195  ° for a length of 
4.256/~,. The calculated specific rotation of the sec- 
ond set is -45  794 ° mm -~ (equivalent to - 7 4  ° mm -1) 
along Y. 

(2) Wahlstrom (1979) predicted the + / -  sign 
change between the direction along the optic axis and 
the direction perpendicular to the optic axis. For 
(+)-a-quar tz ,  the results were + along Z and - along 
Y. The sign change matches the predictions of both 
Wahlstrom (1979) and Barron (1982, p. 285). 

(3) When a beam of light travels along a negative 
direction of Z, the rotation angle changes from clock- 
wise to counterclockwise or vice versa. Since the direc- 
tion of view is also changed, the rotation remains as 
+ or - with respect to the observer. 

(4) Barron (1975) mentioned that, for a sufficiently 
long helix, isotropy is expected in a basal plane XY. 
It is isotropic for the refractive indices of a-quartz 
in the basal plane X Y  because the refractive indices 
refer to the average of group polarizability tensors of 
a unit cell. For optical rotations along directions X 
and Y, however, the rotation angles are anisotropic 
in the basal plane X Y  depending on this interpre- 
tation. 

(5) Barron (1982) mentioned that electric-dipole- 
electric-quadrupole optical activity was of equal 
importance and that use of the electric-dipole- 
magnetic-dipole contribution alone leads to 
erroneous results. Since the electric quadrupole and 
the magnetic dipole were not considered together, the 
polarizability in a skew part of a dielectric tensor, 
which was fitted to a rotation matrix, might include 
the factors of those higher-order multipoles. The 
calculated average polarizability of an SIO4/2 group 
was so close to an empirical result that the empirical 
result might also include the factors of the higher- 
order multipoles. 

Concluding remarks 

Two sets of the principal polarizabilities of an SIO4/2 
group in a-quartz were derived. Both sets have the 
same mean value of the polarizability components. 
The mean value is close to an empirical result. 

The inactive directions 33.83 ° from the optic axis 
were interpreted as corresponding to directions 42.0 ° 
from the axis. The diad axes were predicted to be 
inactive directions. 

The optical-rotation sign along the directions per- 
pendicular to both the optic axis and a diad axis is 
opposite to the rotation sign along the optic axis. 

The interpretation meets the requirement that 
the rotation angle is proportional to the thickness 
of a-quartz.  Bunn's empirical formula was also 
interpreted. 

The author thanks Mr Alan Melnick and Ms 
Ronena N. Fowler for their technical English 



154 OPTICAL ROTATION OF a -QUARTZ 

consultation, Mr Samuel Wiener for his encourage- 
ment and Professors Jimmy W. Viers and John C. 
Schug of the Chemistry Department of VPI & SU for 
discussions. The author also thanks the editors and 
the referees for their valuable comments and help. 
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Le Coloriage des Families de Positions Equivalentes G6n4rales et Sp6ciales dans ies 
Groupes d'Espace Bidimensionnels Quadricolor6s* 
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(Regu le 21 avril 1992, accept~ le 28 mai 1992) 

Abstract 

The properties of the colouring of the general and 
special sets of equivalent points are studied for the 
184 classes of equivalent four-coloured space groups 
connected with the 17 two-dimensional space groups. 
Every general set of equivalent points is divided into 
four equal subsets of points bearing one of the colours 
C, ,  (?2, C3, C4. The same situation occurs in some 
cases for special sets of equivalent points. In par- 
ticular cases, a special set of two-coloured equivalent 
points may be divided into two equal subsets (e.g. 
one subset of positions bearing the colours C~ C2, the 
ot~aer one bearing the colours C3 C4) or into four equal 
subsets (e.g. C, C2, CIC3, C2C4, C3C4) or into six 
equal subsets (C, C2, CIC3, CIC4, C2C3, C2C4, 
C3C4). There exist special sets bearing three colours; 
they divide into four equal subsets (C, C2C3, C1 C2C4, 
C~C3C4, C2C3C4). There are also special sets of 
equivalent points bearing the four colours. The study 
is illustrated by several examples. 

* An unrefereed English translation may be obtained from the 
authors upon request. 

t Auteur responsable h qui doit ~tre envoy6e toute corres- 
pondance. 

Introduction 

Dans un m~moire pr6c6dent (Rekik & Billiet, 1991), 
nous avons donn6 la liste des 281 sous-groupes 
d'indice 4 des 17 groupes d'espace bidimensionnels; 
ils se r6partissent en 184 classes de sous-groupes 
conjugu~s. 

Un groupe d'espace quadricolor~ est un couple 
'groupe d'espace G - sous-groupe g d'indice 4' [pour 
la d~finition et les propri6t6s fondamentales des 
groupes color6s voir, par exemple, Jarratt & Schwar- 
zenberger (1980), Schwarzenberger (1980, 1984) et 
Senechal (1975, 1979, 1988)]; chaque complexe aig 
de la partition de G relative h g correspond 5, une 
couleur C~ (quatre couleurs en tout: CI, C2, C3, 6"4): 

G = a,g + a2g + a3g + a4g 

avec ai • g, aj ~ aig, j > i. 

Si le sous-groupe g' est conjugu6 de g, le couple G-g'  
d6finit par convention un groupe d'espace quadri- 
color6 6quivalent h celui d6fini par G-g; il existe 
donc 184 classes de groupes quadricolor6s 
6quivalents correspondant aux 17 groupes d'espace 
bidimensionnels. 
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